
IAD-AG A 819 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F (U 9/2

REAL TINE GARBAGE COLLECTOR THAT CAN RECOVER TEMPORARY STORAB--ETCCU)
APR 80 H LIEBERMAN, C HEWITT NOOOI-75-C-0522

NCLASSIFIED AIM-569 NLmh/EE/lEll/E
/EE//I/EEEEEEE
*fl//***fl

SECURITYv CLASSIFICATION OF THIS PAGE (When Dae Ehntered)

A.I. Memo 569 , ,(yqV /"
4. TI TL (and Subtitie) $.YPE OF REPORT A PERIOD COVERED

AReal Time Garbage Collector ,1hat ,ean RecoverII I I
'K Temporary Storage Quickly. EFOMN R

6. ERFRMIG OG.REPORT NUMBER

S 7. AUTNORa.) 6. ~ ~ ;;ir CONTRACT OR GRANT NUBERa)

b N,00014-75-C-0643

9, PRFOMING0 RA.IZTIO NAM AN ADDESS10. PROGRAM ELEMENT. PROJECT, TASK

11. CONTRO LLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency (
14.00 Wilson Blvd 13~. NUMBER Of PAGES
Arlington, Virginia 22209 3

14 MONITORING AGENCY NAME &t ADDRESS(if different from ControIlin& Office) iS. SECURITY CLASS. (of this eotf

Office of Naval Research UNCLASSI FIED
Information Systems
Arlington, Virginia 22217 IS ICHEDULE WNRAI

16. DISTRIBUTION STATEMENT (of tis Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEME (of b fiJ11 f 0af loc 20, if different front Report) &o

1S. SUPPLEMENTARY NOTES
; i

19 I. KEY WORDS (Continue on ret".rs. aide it necessary and Identify by block number)

LUtemporary storage object-oriented programming

LA_ compaging storage sak

reference counting virtual memory

CP.* 20. AS RACT (continue ent revere side if neceeeary and identify by block num~ber)
In previous heap storage systems, the cost of creating objects and gar-

bage collection is independent of the lifetime of the object. Since tem-
porary objects acount for a large portion of storage use, it's worth op-
timizing a garbage collector to reclaim temporary storage faster. We pre-
sent a garbage collection algorithm which: Makes short term storage cheaper.
Operates in realtime - object creation and access times are bounded. Works
well with multiple processors and a large address space.

DD 1 JA"73 1473 EDITION OF INOV 65 1SOBSOLETE UNCLASSIFIEDf
9/N4 01,02-fl4- 6601 I ______________________

SECURITY CLASSIFICATION Of THIS PAGE (*%*n Data U110tered)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.L Memo No. 569 April, 1980

A Real Time Garbage Collector That Can Recover Temporary Storage Oulckiy

Henry Lieberman
Carl Hewitt

Abstract

In previous heap storage systems, the cost of creating objects and garbage
collection is independent of the lifetime of the object. Since temporary
objects account for a large portion of storage use, it's worth optimizing a
garbage collector to reclaim temporary storage faster. We present a
garbage collection algorithm which:

Makes short term storage cheaper than long term storage.
Operates in real time - object creation and access times are bounded.
Works well with multiple processors and a large address space.

I'
Acknowledgements: This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts

Institute of Technology. Support for the laboratory's artificial intelligence research Is provided In part by the Office of Naval

Research under Office of Naval Research contract N00014-75-C-0622, and In part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract N00014-76-C-0643.

80 5 22 069

April 26. 1980 at 2:35 Hery Lieberman and Caud Hewitt

A Real Time Garbage Collector That Can Recover Temporary Storage Oulckly

Henry Lieberman and Carl Hewitt

Artificial Intelligence Laboratory
and Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

In previous heap storage systems, the cost of creating objects and garbage
collection is independent of the lifetime of the object. Since temporary
objects account for a large portion of storage use, it's worth optimizing a
garbage collector to reclaim temporary storage faster. We present a
garbage collection algorithm which:

Makes short term storage cheaper than long term storage.
Operates in real time - object creation and access times are bounded.
Works well with multiple processors and a large address space.

1. Temporary storage should be cheaper than long term storage

In Lisp, and similar systems with dynamically allocated storage, the most common
use of memory is as temporary storage Most objects are created, used for a while,
then thrown away. The traditional garbage collection algorithms [13] have the defect
that temporary storage is just as costly as more permanent storage. It takes the
same time to recover the storage for an object that becomes inaccessible, regardless
of the lifetime of the object. Empirical studies of Lisp programs indicate that there
is much to be gained in performance by optimizing the special case of recovering
temporary storage. The performance of the new generation of object oriented,
message passing systems [31 [41 [5] will rely increasingly on the efficiency of
temporary storage.

Some systems use reference counts instead of garbage collection, primarily because a
reference count system can reclaim temporary storage more quickly. A reference
count system has the property that temporary storage is re-usable as soon as it
becomes inaccessible, when its reference count reaches zero. However, reference
count systems have formidable problems of their own. They cannot reclaim circular
structures, which are becoming increasingly important in sophisticated Al

Real Time GC For Temporary Storage 1. Temporary storage should be cheaper than long teM atrage

April 26. 1980 at 2:35 Page 2 Henry Liebemian and Cad Hewitt

programming. Making sure reference counts are always updated when necessary and
kept consistent is sometimes tricky. Maintaining the reference counts often consumes
a considerable percentage of the total processor time. Some have also proposed more
complicated systems which combine reference counts with garbage collection [11],
[12]

In this paper we propose a simple extension to a garbage collection algorithm which
can recover temporary storage quickly. Our idea builds on the algorithm of Henry
Baker [1] which performs garbage collection in real time - the elementary object
creation and access operations take time which is bounded by a constant, regardless
of the size of the memory. We would also like a garbage collection algorithm which
will work well on machines with a very large address space [14]. We believe these
properties will be essential to make garbage collection practical on the next
generation of computers, The suggestions described in this paper are currently being
implemented on the MIT Lisp Machine [9] [10].

2. A review of Baker's algorithm

Baker proposes the address space be divided into fromspace and tospace Objects are
created (by operations like Lisp's cONS) from successive memory locations in tospace
The garbage collection process traces accessible objects, incrementally evacuating
objects, moving them from fromspace to tospace. When no more accessible objects
remain in fromspace, its memory can be re-used. An operation called a flip occurs,
where the tospace becomes.the' fromspace and vice versa.

When a object is evacuated from froinspace to tospace, a forwarding pointer or
(invisible pointer) is leftein the .fromspace memory cell pointing at its new location in
tospace. Whenever the* fronjsp~ce cell is referenced, the forwarding pointer is
followed and the reference is chia~nged to point to the tospace object

The operations which access coinponents of an object (like CAR and CDR in Lisp)
check the address to make sure the address is in tospace. Any object located in
fromspace is evacuated to tospace, and the reference updated.

When a object is first evacuated to tospace, one of its components can point back to
fromspace. We'd like to remove all pointers back to fromspace so that fromspaces
memory can be recycled. Whenever a pointer from tospace to fromspace is found,
we can remove the pointer by evacuating the fromspace object, moving it to tospace,
and updating the tospace pointer to the newly evacuated object in tospace. This
process is called scavenging.

Real Time GC For Temporary Storage 2. A review of Bakers algorlthm

April 26, 1980 at 2:35 Page 3 Nry Liebernan and Carl Hewitt

Tospace is divided into two areas, the creation area where newly created objects
appear, and the evacuation area, which contains objects evacuated from fromspace.
(In Baker's scheme, the creation area was allocated from the highest location in
tospace, downward, and the evacuation area was allocated from the bottom, upward.)

Scavenging is a process which linearly scans the evacuation area of tospace and if a
component of an object points to fromspace, the fromspace object is evacuated to
tospace (appended to the evacuation area). Like the mark phase of traditional
garbage collectors, scavenging touches all accessible objects. It does so in breadth-
first order, and does not require a stack.

The scavenger process can be interleaved with object creation, evacuating a few
fromspace objects to tospace every time an object is created. Since only a small
amount of work must be done whenever an object is created, or parts of an object
are accessed, the garbage collection operates in real time.

Figure rn]

(See next page)

Real Time OC For Temporary Storalge 2. A review of Bakesl algorihm

'a

Henry Baker's Real Time Garbage Collector Figure i

Fromspace J Iospace

New objects
created here

Memory is divided into Fromspace and Tospace

Tiobetmvd -romspace I ospace Forwarding address

toT-ae2 L ' " The object Is
C:: V moved to here

_______________ _______________ The contents of the
old objects is copied.

Evacuating an object moves it from Fromspace to Tospace

Thie contents o Fromspace -opc This object is Scavenged
the Scavenged1
object is
Evacuated. -j

Scavenging an object removes pointers to Fromspace

Tospace Fromr',pace Objects are now Evacuated

in the other direction

After a Flip, Fromspace and Tospace are exchanged

April 26. 1980 at 2:35 Page 4 Henry Lolebemn and Cad Hewitt

(For reference, a more detailed description of the Baker algorithm appears in an
appendix.)

3. Small regions of memory can replace Baker's spaces

We now present a description of our alternative to Baker's algorithm. (A more
detailed, step-by-step description of the procedure appears in an appendix. For the
moment, let's pretend that all references to objects reside in the heap memory. We
will consider other sources of object references later.)

We will retain some of the essential aspects of Baker's algorithm. Garbage collecting
a space will involve moving all the accessible objects out of the space, evacuating
them to another space, then scavenging to remove all pointers pointing into the old
space so the memory for the space can be recycled.

Our scheme will involve two major improvements to Baker's. Baker divides the
address space into two halves, fromspace and tospace (cutting down the effectively
usable address space by a factor of two). In our scheme, the address space is
allocated in small regions,

A region is a small set of pages of memory (not necessarily contiguous). We won't
commit ourselves to a particular size for regions, but regions should be small
compared to the address space. The machine should be able to quickly tell, for a
given page, what region it belongs to.

We will use these fine divisions of the address space to vary the rate of garbage
collection for each region, according to the age of the region. Recently created
regions will contain high percentages of garbage, and will be garbage collected
frequently. Older regions will contain relatively permanent data, and will be garbage
collected very seldom.

New objects are created from storage allocated in creation regions. At any time,
there's a current creation region, in which operations like CONS can create new
objects. When the current creation region is filled, a new one is allocated.

We introduce a mechanism to keep track of how recent each region is, so we can
distinguish between data likely to be temporary or more permanent Regions are
organized into generations. The system keeps track of a current generation number
and when a creation region is born, it is given the current generation number. The
current generation number is periodically incremented.

Real Time GC For Temporary Storage 3. Small regions of memory can replace Baker' spaces

Aprll 26. 1980 at 2:35 Page 5 Henry Llebeman aW Carl Hewitt

The process of garbage collecting a particular region is initiated by condemning the
region. We'll call objects obsolete if they reside in a region that's been condemned.
Condemning a region announces our intention to move all the accessible objects out
of the region so that we can recycle the memory for that region. When we
condemn a region, we create new regions to hold the objects evacuated out of a
condemned region. Each of these evacuation regions inherits the same generation
number as the condemned region, but is assigned a version number one higher. The
version number of a region counts how many times regions of that generation have
been condemned.

Objects are evacuated in the same way as in the original Baker algorithm. We
allocate space for a new object in the evacuation region, and copy the contents of
the old object into the new space. A forwarding pointer is left in the old memory
cell pointing to the new object If we encounter any reference to a cell containing a
forwarding pointer, the reference is updated to point to the new object

Figure [21

(See next page)

Real Time GC For Temporary Storage 3. Small regions of memory can replace Baker's spaces

Our Real Time Garbage Collector Figure 2

1960 Generation 1970 Generation 1980 Generation

Version 0
Creation regions

Memory is allocated in small regions
Regions are tagged with generation and version numbers

196C, Generation 1970 Generation 1980 Generation

Version 0
Creation regions

This region is condemned

Version 1
All accessible objects from the Evacuation regions
condemned region will be
moved to here L

Garbage collecting a region is initiated by condemning it
Accessible objects from the condemned region
will be evacuated to a new region

Apil 28. 1980 at 2.35 Page 6 Herry Lieberman and Carl Hewitt

The correspondence between our algorithm and Baker's is that obsolete areas of
memory play the role of fromspace, everything else in memory is like Baker's
tospace. Condemning a region is like Baker's flip operation, on a much smaller scale.

4. Scavenging time is reduced by restrictions on where pointers can point

In order to release memory for a condemned region, we have to make sure Lhat no
pointers from outside the condemned region point to it. This is done, as in Baker's
algorithm, by scavenging, linearly scanning all regions which might contain a pointer
to an obsolete object, evacuating any obsolete object and updating the reference.

Figure [31

(See next page)

Real Time GC For Temporary Storage 4. Scavenging time Is reduced by restrictions on where pointers can point

Evacuation and '3cavenging Figure 3

1960 Generation 1970 Generation 1980 Generation

This

object is
I I evacuated Version 0

°C reation regions

A foi warding pointer is q Regions from 1970 and later must be scavenged
left in the old object to remove pointers to the condemned region

The contents of the old object Version 1
is copied into a new cell Evacuation regions

When we encounter a reference to a condemned region
we evacuate the object

1960 Generation 1970 Generation 1980 Generation

Version 0

This object is evacuiated Creation regions
when the scavnnger
discovers a pointer
to it from outside ihis object had a pointer to the condemned region

It now points to the evacuated object

Version1

Scav,-nring results in 4- Evactuation fegions
evacuating the object to here

Scavenging removes pointers to condemned regions
The memory for the condemned region can now be recycled

AprIl 28. 1980 at 2:36 Page 7 Hey Lieberman and Carl Hewitt

Scavenging is potentially a lot of work, and since our algorithm is designed to
condemn regions at a much faster rate than Baker does flips, the efficiency of
scavenging is more crucial for our system. We will attempt to hold down the
scavenging time by enforcing restrictions on where pointers may point, so that we
will have a better chance of knowing where to look to find all references to a
condemned region. These restrictions will cut down the amount of storage which has
to be scanned to find and update obsolete references.

We intend to exploit some empirically observed properties of heap storage. Most
pointers point backward in time, that is, objects tend to point to objects which were
created earlier. This is because object creation operations like CONS can only create
backward pointers, since the components of the object must exist before the object
itself is created. Pointers which point forward in time can only arise as a result of a
destructive operation like RPLACA which can assign a newer pointer as a component of
an older object. Since we intend to condemn regions in recent generations more
frequently than older generations, we will try to engineer a scheme which reduces
scavenging for newer generations at the expense of making scavenging more costly for
older generations.

The idea is to a/low objects to point backward any number of generations, but forward
only one generation. This property will be maintained as an invariant throughout the
operation of the system. By restricting pointers from older generations to newer
generations, we are assured that references to a region will come from either the
same generation, the previous generation, or from younger generations. Thus, when a
region is condemned, we need not scavenge any generations older than the
immediately previous generation. This will mean it will be much faster to reclaim
regions in recent generations, since there will be comparatively little storage that
needs to be scavenged.

What happens when an attempt is made to create a pointer from an older generation
to a younger generation? If an old object wants to point to a member of the
younger generation, we will require that the old object must become part of the
younger generation! Operations like RPLACA must check to see if they might cause an
older object to point to a younger object. If this is the case, the older object is
evacuated, moving the old object into the same generation as the younger object.
Then the older object can point to the younger object without creating a pointer
forward across a generation gap.

When we evacuate the old object, we must leave a forwarding pointer from the old
object's former memory location to its new home. We can't allow these forwarding

Real Time GC For Temporary Storage 4. Scavenging time Is reduced by restrictions on where pointers can point

......... I

April 26, 1980 at 2:35 Page 8 Henry Lleberman and Carl Hewitt

pointers to extend across more than one generation, since that would violate our
invar'ant. So, instead of evacuating the object to its new home all at once, the
evactation is performed one generation at a time First, the object is evacuated into
an evacuation region of the immediately following generation, then to the next, and
so on until the destination generation is reached. This creates a chain of forwarding
pointers between the generations. Following the forwarding pointers when the old
object is referenced will take some time, but the forwarding pointers will disappear
as the regions containing them are eventually condemned, and we expect forward
pointers to be relatively rare.

Figure [41

(See next page)

Real Time GC For Temporary Storage 4. Scavenging time is reduced by restrietlal or' where pointers can point

I,

Pointers may point forward only one generation Figure.*

190 Generation 1970 Generation 1980 Generation

Pointers may point back
-- _-any number of

generations

This pointer would not be allowed

An object in 1960 may not point directly to an object in 1980

1960 Generation 1970 Generation 1980 Generation

The object is evacuated

to 1980 and can point
at a 1980 object

A chain of lorwarding pointers is created between 1960 and 1980

The old object is evacuated in steps to the new generation

190 Generation 1970 Generation 1980 Genet ation

No pointers may exist Thei e may he pointers
from 1960 to 1980 from 1970 and later generations to 1980

When 1980 is condemned, 1970 is scavenged, but not 1960

Aprl 26. 1980 at 2:35 Page 9 Henry Lieberman and Carl Hewitt

The reader should be sure to understand that it is not necessary to wait for
scavenging to be completed for one condemned region before another region can be
condemned. Condemning a region starts a wave of scavenging scanning all memory
more recent than the condemned region. The wave stops when the scan reaches the
most recent region, and memory for the condemned region is released. Many such
waves can be present in the system at any time, without interfering with each other.
Each wave of scavenging just needs to keep a pointer saying where it currently is
working, and the pointer is advanced each time more scavenging is performed.

There is some flexibility about the order in which scavenging is performed. We
would probably recommend always scavenging the oldest objects first Paging during
scavenging might be reduced by adopting a suggestion of Greenblatt, which would
always prefer scavenging a resident page to one which is out on the disk.

We should point out that the idea of restricting pointers to point forward only one
generation at a time is independent of the particular method used to accomplish
garbage collection for each generation. It would be possible to substitute a more
standard mark and sweep algorithm for the Baker-style copying garbage collection
that we advocate.

5. Older objects are garbage collected more slowly than younger objects

The performance of our garbage ollector is improved by varying the rate at which
regions in a generation are condemned according to the age of the objects. A good
heuristic is to assume that if objects have been around for a long time, that they are
relatively permanent and will continue to be accessible. This makes it reasonable to
use the generation number and version number of a region as a guideline to decide
when to condemn it.

As the objects in a region get older, the operation of garbage collecting the region
by making the region obsolete and evacuating all its accessible pointers will happen
less frequently. This will save time which would have been wasted moving permanent
objects around, at the cost of increasing the time it takes to reclaim those objects in
the region which do become inaccessible. For regions containing mostly objects with
long lifetimes, this tradeoff will be worthwhile. Young regions will contain a high
percentage of garbage, so it is advantageous to reclaim inaccessible objects in these
regions as soon as possible.

Recovering storage for old inaccessible objects is costly, since all the more recent

Real Time GC For Temporary Storage 5. Older objects are garbage collected more slowly than younger objects

April 26, 1980 at 2:35 Page 10 Henry Liebonnan and Carl Hewitt

memory must be scavenged. Since garbage collection is so expensive for old objects,
we should do it infrequently, so the cost can be amortized over a long time period.
Recovering storage for new inaccessible objects is cheap, since very little storage has
to be scavenged. So our scheme can be thought of as renting memory, where the
cost is proportional to the time it is used, as opposed to traditional methods which
are like buying memory, since the cost is constant

An additional optimization that might be worthwhile for very old objects is to
coalesce several adjacent generations. Since the number of objects in a generation
decays with time, old generations may contain few objects. It would reduce
scavenging time to look for pointers to any generation of a group rather than to just
one generation, since scavenging for old generations requires going thru many
generations. This would reduce paging time necessary to bring in all the pages
between a very old gceneration and the present generation.

6. Scavenging may not be necessary at all!

The most radical solution to the scavenging problem is to avoid scavenging entirely!
This might actually be a serious proposal There are several reasons which may make
this both feasible and desirable.

Let's examine the reasons for performing scavenging in the first place. A primary
reason for scavenging is to be able to re-use the address space (Note that re-using
real memory is not an issue in virtual memory systems, since paging manages the use
of real memory.) If the address space is small, it may be necessary to re-use
addresses that previously held objects which became inaccessible, to avoid exhausting
the address space. Another reason for scavenging is to compact the address space In
systems with large address spaces, the page tables themselves may be subject to
paging, so performance can be improved by compacting the address space.
Additional reasons for scavenging are concerned with the disk. It may be necessary
to re-use space on the disk, or compacting the storage on the disk may result in
reduced disk access time.

It is possible that the evolution of the next generation of computer systems may
change the characteristics of systems so as to reduce or eliminate the need for
scavenging. Of course, prediction of these trends is highly speculative, but we would
like call attention to some of the possibilities. Very large address spaces may obviate
the need for re-use of the address space. We may reasonably expect computers in
the next generation that may be able to run for weeks to years without needing to

Real Time GC For Temporary Storage 6. Scavenging may not be necesaary at all!

April 26, 1980 at 2:35 Page 11 Henry Lieberman and Ca Hewitt

re-use address space [7]. Write-once media such as video disks may be used for
secondary storage, so that re-using or compacting secondary storage space does not
become an issue. Under circumstances such as these, the cost of scavenging may
exceed the benefits obtained.

Furthermore, several recently developed languages for artificial intelligence research
have the property that they would not benefit from scavenging at alL The languages
have the property that no objects in the language can ever be reclaimed! Current
implementations of new pattern directed invocation languages like AMiORD or ETHER do
not have any operations which completely remove or let go of assertions in the data
base. Once an assertion is there, it remains forever, though belief in the assertion
may be renounced by further processing. Description languages such as KRL or OMEGA
currently suffer from this problem as well (However, future versions of ETHER and
OMEGA are developing a notion of viewpoints, which may allow some knowledge to
become inaccessible and be reclaimed.)

These languages have not yet been applied to sufficiently large problems so that
reclamation becomes an important issue in present-day implementations. Future
machines which use these languages for large projects would want to disable
scavenging, since the scavenger would operate to no avail Some means of getting to
any piece of knowledge in the system would always remain.

7. Stacks need special consideration

In presenting our garbage collection algorithms above, we acted as if all pointers to
objects were resident in the object memory itself. However, most present-day Lisp
implementations also involve internal stacks, registers, and free (special) variables
which may also reference objects. We must consider object references which reside in
these places as well as those stored in object memory.

The stack, registers, and value cells must be scavenged for pointers to obsolete
objects before the memory for a condemned region may be recovered. Conceptually,
we will consider the stack, registers and value cells to always be a part of the
current generation, regardless of when they were actually created.

The stack can be scavenged incrementally starting from the bottom, doing a little bit
of the job on each object creation operation. Between object creation operations, the
stack may change. The scavenger always remembers where it left off, and when it
resumes scanning, it checks the pointer to the top of the stack to see if the stack

Real Time GC For Temporary Storage 7. Stacks need special conalderatlon

April 26, 1980 at 2:35 Page 12 Henry Llebemian and Carl Hewitt

has been popped past the place where it remembered. If so, the job is done, since
we're only interested in currently accessible objects.

I i a system which uses more than one stack to implement coroutines or
multiprocessing, such as [9] we recommend that each stack have its own set of
current regions for creating objects, to improve paging behaviour. Another
suggestion which might help performance is to notice that the lifetime of temporary
storage is approximately (though not exactly!) correlated with pushing and popping
the stack. This suggests that a good time to expect there will be a lot of garbage is
when returning from functions. This might lead to a policy of condemning regions
after a certain number of stack pops.

Using linear stacks for temporary storage is a popular technique mainly because it
has the property that we seek for our garbage collector., temporary storage is
reclaimed quickly after it becomes inaccessible When Lisp calls a function, the
arguments are pushed on a stack, and automatically popped off when the function
returns. The storage used for the arguments on the stack is immediately re-usable
as soon as the function returns. However, sticking to a strict stack discipline has its
well-known problems, leading to the traditional funarg problem of Lisp [15] Object
oriented languages do not follow a stack discipline, and we would like temporary
storage in these languages to be efficient

There's currently a sharp discrepancy between cheap stack storage and expensive heap
storage. It should be the case that holding on to an object only slightly longer is
only slightly more expensive. We would like to reduce reliance on stacks, yet retain
reasonable efficiency. Our hope is that we can reduce the cost of garbage collection
in the case of temporary storage so that it is competitive with using a stack for
temporary storage.

8. Value cells need special consideration

In shallow binding implementations of Lisp, such as MacLisp and Lisp Machine Lisp,
each atomic symbol representing a variable has a value cell associated with it to hold
its current value. Value cells are troublesome to our scheme because the memory
for a region cannot be recycled until all the references to it which may reside in
value cells are removed. (Alternative deep binding or lexical binding implementations
of Lisp store values in data objects called environments, and are not subject to this
problem.)

Real Time GC For Temporary Storage 8. Value ceils need special consideration

April 26, 1980 at 2:35 Page 13 Henry Lleborman and Cart Hewitt

We would like to avoid having to scavenge all the value cells. There are several
ways this can be accomplished. One possibility we recommend is to keep a data
structure which holds, for each generation number, a list of all the value cells that
refer to it. Having this data structure makes it easy to update all the references
from value cells. The scavenger just asks for all value cells which point to that
generation, and evacuates them exactly as for references from the heap.

A special trick makes it easy to maintain this data structure. It can be kept in the
form of a doubly-linked circular list. Each symbol will be given, in addition to a
value cell, two more cells, one to point forward in the circle, to the next value cell
pointing to the same generation, one cell pointing to the previous value cell which
points to the same generation. When an assignment statement changes the value of
a cell, we check to see if the generation of the new value is the same as the
generation of the old value. If the generations are the same, no special action need
be taken. If they're different, the value cell must by spliced out of the circular list
of the generation of the old value, and spliced in to the list corresponding to the
generation of the new value. This takes just a handful of memory references. Note
that the list can be maintained without doing any coNsing at all!

Figure [51

(See next page)

Real Time GC For Temporary Storage 8. Vaklo celia need apecial coneldrallon

Figure 5

Keeping Track Of Value Cells Pointing To Each Generation

1970 Generation 1980 Genei ation

Avalue cell for a special variable

Next pointer to same generation
Previous pointer to samne generation

Value cells pointing to 1970 Value cells pointing to 1980

Doubly linked ings of value cells kept for each generation

1970 Generation 1980 Generation

Next poin~ter to ,%ame qnneration

Valuew troa,''na'n

Previous pointer to same generation

The value is changed from
a 1970 object to a 1980 object

Splice out of the 1970 ring Splice into the 1980 ring

When value cells are changed, the rings must be updated

Aprl 26, 1980 at 2:35 Page 14 Henry Lieberman and Carl Hewitt

This trick for monitoring entry of pointers into generations from value cells also
provides another possible solution to the problem of limiting forward pointers to
reduce scavenging. Whenever a modifying operation attempts to create a pointer from
an older generation to a younger one, we can enter the older object in the circular
list containing references to the younger generation, just as if a value cell pointed to
the young object. When scavenging for pointers to the younger generation, we need
only consult the list, which will contain all extant pointers from earlier generations.

To enter an object in the list requires that two cells be allocated the first time the
object is modified to contain a forward pointer, since the list should be linked in
both directions. To avoid having to create room for these pointers in every
modifiable object, another level of indirection can be used. The old object can
contain an invisible pointer to a group of cells containing the pointer to the young
object, and the cells which link it with others which point to the same generation.
Pointers from the circular lists to objects must be weak pointers, pointers which don't
protect the objects they point to from garbage collection. If an old region is
condemned, there should be a mechanisn which removes all pointers which point
from that region to younger generations from the entry lists for those generations.

This may make scavenging easier, but at the cost of decreasing locality and
complicating the algorithm. It does remove the need to evacuate objects which
contain forward pointers to the generation to which they point Another possibility is
to consider evacuating in the other direction, moving the younger object and
everything it points to into the older generation containing the object that points to
it. This might be done on the theory that a old object pointing to a newer one will
increase the chances that the newer one will remain accessible, and should therefore
be garbage collected less frequently.

9. How good is the performance of our garbage collector?

Judging garbage collection algorithms is tricky. They are heavily dependent on the
empirical properties of data used by programs, and their performance depends upon
whether certain kinds of operations are cheap or expensive in the underlying
machine. We believe our algorithm has the potential for good performance,
considering tradeoffs appropriate for the machines which will be prevalent in the next
couple of years, and the needs of large-scale Al software.

We consider a crucial aspect of the performance of any garbage collection scheme to
be its paging behaviour. With the new personal computers such as our Lisp

Real Time GC For Temporary Storage 9. How good as the performance of owr galbage collector?

April 26, 1980 at 2:35 Page 15 Hery Lleberman and Carl Hewitt

Machine, the limiting factor in performance is often the time spent paging.
Although the size of main memory in computer systems is increasing, virtual memory
address spaces are increasing at a much faster rate. (Consider the VAX's address
space of 32 bits, hundreds of times larger than that of the previous generation. Main
memory sizes have increased only by several times over the previous generation.)
Since the next generation of machines will have large address spaces, garbage
collection for the purpose of increasing locality of reference may be more important
than for the purpose of re-using address space. Locality of reference is also very
important in systems which have a high-speed cache for memory references.

For a rough estimate of the benefits of increasing locality, consider that processing a
page fault on the Lisp Machine takes 60 milliseconds. If we estimate the cost of
doing scavenging for a single object at about 10 microseconds, then we can scavenge
6000 objects in the time it takes for a single page fault. Since the page size on our
machine is 256 words, this says that it would be worth scavenging 24 pages, if
increasing locality of reference could avoid even a single page fault by doing so

These considerations encourage compacting garbage collectors such as ours and
Baker's, which continually copy accessible objects, grouping them together and
leaving behind the garbage. We claim that our algorithm will perform much better
than Baker's in promoting locality. Since Baker's fromspace and tospace are large,
scavenging may chase pointers anywhere and cause thrashing. Our regions are much
smaller, so scavenging will cause less paging. We expect that current regions and
regions of recent vintage will usually be paged in, so there should seldom be a need
to go to secondary storage.

It is our opinion that sophisticated Al programs will make increasing use of
temporary storage, so we have designed our algorithm to optimize the use of
temporary storage. Programs which do a lot of internal thinking will need lots of
temporary storage as "thinking material" before they commit themselves to decisions.
These programs will need to construct hypothetical worlds, which may eventually be
thrown away after their purpose in helping to make decisions has been served. If a
large proportion of objects which are created are eventually lost, garbage collectors
which trace the accessible objects will be preferred to alternatives like reference counts,
which trace the inaccessible objects.

Consider what will happen in our proposal if most of the objects are in fact
temporary, and become inaccessible soon after they are created. Shortly after a
region fills up, it is condemned. If it contains mostly temporary storage which has
become inaccessible by the time it is condemned, then there are only a few accessible

Real Time GC For Temporary Storage 9. How good Is the performance of out gafbge collector?

April 26, 1980 at 2:35 Page 16 Henry Lieberman and Carl Hewitt

objects to be evacuated. Since the region was created a short time ago, there will
be at most a few more recent generations that need to be scavenged, so the
scavenger will finish quickly. Then we can recycle the memory for the original
region!

The region to which the objects are moved will probably be condemned again soon
after the first operation, which will recover anything which became garbage since the
first time. As the region ages, the condemnation operations will come less and less
frequently. If the rate of recovery of memory by the scavenger is roughly equal to
the rate of object creation, we will do very little paging.

What happens if nearly all the data turns out to be permanent instead of temporary?
Initially, almost all the objects will be evacuated, and very little memory will be
recovered as a result However, the objects that survive many condemnations will
only again be evacuated once in a great while. It might be worthwhile to keep track
of what proportion of objects were evacuated from a region until its reclaimed, and
use that as a guide to decide how long to wait to condemn that generation the next
time. The theory is that generations containing a high proportion of accessible
objects will continue to do so.

In Baker's scheme, if we let go of a temporary object, it might take a long time to
recover the storage for the object, since we must wait for a flip, which is a relatively
rare event Since Baker's scheme doesn't distinguish between temporary and
permanent objects, a lot of wasted time will be spent moving permanent objects
again and again, with no memory recovered as a result We speed up the rate of
garbage collection to get temporary objects back faster and slow it down to avoid
moving permanent objects.

Precise determination of how well our garbage collector will perform on real
programs and comparison with more conventional alternatives must await actual
implementation and measurement

10. Users can decide between short term and long term memory

Often, a sophisticated user is in a position to know whether a particular object is
likely to be temporary or more permanent The system should be able to take
advantage of such knowledge to improve the performance of the the program. It
might be advantageous to supply the user with several different flavors of object
creation operations, so that the system can choose the best allocation strategy

Real Time GC For Temporary Storage 10. Users can decide between short temt and long term memory

April 26. 1980 at 2:35 Page 17 Henry Ileberman and Carl Hewitt

appropriate for that kind of object. An operation could be supplied which creates
objects directly in some older generation, rather than in the current generation. Of
course, this decision will have no effect upon the semantics of the program, it will
only affect the efficiency of garbage collection.

Adjusting the region size can control the efficiency of using short term versus long
term memory. Temporary objects should be allocated in small regions, so the
storage for the object will be recovered very soon after it is abandoned. On the
other hand, more permanent objects should be allocated from larger regions This
saves the system the trouble of having to frequently evacuate the object from
generation to generation, at the cost of having to wait longer before the storage can
be recovered.

Since we expect that most storage is temporary, we recommend that objects be
created in short term memory by default System primitives, like Lisp's PUTPROP,
which expect to create relatively permanent objects can use longer term versions of
CON&

11. Parallelism can be used to speed up garbage collection

Since processors are continually getting cheaper, an attractive way to improve the
performance of garbage collection would be to have additional processors which could
perform garbage collection continually while the user's program is running. Our
proposals for garbage collection allow this to be done.

A simple way to exploit parallelism would be to use one other processor to act as
the scavenger. While the user's program is running, the scavenger could be constantly
evacuating accessible objects from obsolete areas of memory into areas currently
being used.

Whenever parallelism is introduced, care must be taken to avoid timing errors. The
major potential trouble spot with our scheme occurs when objects are being
evacuated by the scavenger. There may be transient states where the pointers are
inconsistent. So, it is necessary to lock out the user processor from accessing objects
while they are being evacuated by the scavenger processor. If we have only one
scavenger processor, it can only be evacuating one object at a time. Thus, the
scavenger can keep the addresses of memory cells in motion in special registers. The
user processor must check the address of a cell whenever it is being accessed. If
that cell is being used by the scavenger, the user processor must wait, but only for

Real Time GC For Temporary Storage 11. Parallellam can be used to speed Lp garlage collection

AprIl 26, 1980 at 2:35 Page 18 Henry Llebernan and Carl Hewitt

the few moments that it will take the scavenger to complete the move. The address
of cells being accessed by the user must be checked anyway to see if the cell is in
an obsolete area of memory, so an additional check will not be expensive. It should
be possible to build this check into the hardware.

12. Cheaper short term memory may improve programming style

It's our hope that making the use of temporary storage cheaper will lead to
improvements in program clarity. Often, complications in program structure are
motivated by the need to avoid creating temporary storage for intermediate results.

Here's an example of how the cost of temporary storage can affect design decisions
in programming. Consider the problem of writing a matrix multiplication routine in
Lisp, to operate on matrices represented as lists of rows, each row represented as a
list of number.

(1 2) (5 6) (19 22)
() x () = (
(3 4) (7 8) (43 58)

This example would be represented as

(MATRIX-MULTIPLY '((1 2) (3 4)) '((5 6) (7 8))) evaluates to ((19 22) (43 58))

Let's imagine, that as part of our mathematics library we already have a function
which takes the dot product of vectors, and a function which proch: * the transpose
of a matrix.

(DOT-PRODUCT '(1 Z) 1(5 7)) evaluates to 19

(TRANSPOSE '((5 6) (7 8))) evaluates to ((5 7) (6 8)))

The usual procedure for multiplying a matrix is to compute the elements of the
product by multiplying elements of the rows of the first matrix by elements of the
columns of the second matrix Using the transpose procedure, we can turn the
columns of the second matrix into rows, so that they "line up" with the rows of the
first matrix, then use the dot product function to multiply corresponding rows. This
solution is elegantly expressed as follows:

Real Time GC For Temporary Storage 12. Cheaper r temi memory may improve programming style

- -/

April 26, 1980 at 2:35 Page 19 Henry Lieberman and Carl Hewitt

Define MATRIX-MULTIPLY of a LEFT-MATRIX and a RIGHT-MATRIX:
Let COLUMNS be the TRANSPOSE of RIGHT-MATRIX.
Create a list whose elements are:

For each ROW in the LEFT-MATRIX,
Create a list whose elements are:

For each COLUMN in the COLUMNS matrix,
the DOT-PRODUCT of the ROW and the COLUMN.

(The actual Lisp code corresponding to the descriptions of algorithms in this section
appears in an appendix.)

This solution has a potential efficiency problem: The TRANSPOSE function creates a
new list which is thrown away after the matrices are multiplied.

In a conventional Lisp system, using lists as temporary storage like this is expensive,
since the lists are created and only used for a short time before being subject to
garbage collection. This leads programmers to want to try to optimize out the
creation of intermediate list structure. Instead of doing a "two-pass" procedure over
the matrix, one to transpose, another to multiply, we can use instead a more
complicated "one-pass" procedure. Instead of creating a new list whose elements are
in a convenient order, the one-pass procedure extracts the appropriate elements from
the columns of the matrix when needed. Especially if multiplications of small
matrices are frequent, the following version might be considerably faster in a
conventional Lisp system.

Define MATRIX-MULTIPLY-WITHOUT-TRANSPOSING

of LEFT-MATRIX and RIGHT-MATRIX:

Create a list whose elements are:

For each ROW in the LEFT-MATRIX,
Create a list whose elements are:

For COLUMN-INDEX from 8 to the number of columns of RIGHT-MATRIX:
The DOT-PRODUCT-COLUMN of

the ROW,

the RIGHT-MATRIX, and

the COLUMN-INDEX.

This now forces us to write a new DOT-PRODUCT routine, which can extract the
elements of the second vector from the columns of the matrix. This duplicates some
of the knowledge we already had in the DOT-PRODUCT function.

Real Time GC For Temporary Storage 12. Cheaper short term memory may Improve programming style

April 26, 1980 at 2:35 Page 20 Henry Lieberman and Carl Hewitt

Define DOT-PRODUCT-COLUMN of a ROW, a MATRIX, and a COLUMN-INDEX:
If the ROW is empty, return 8.
Otherwise, return the sum of:

the product of

The FIRST element of the row,
and the element indexed by COLUMN-INDEX of the FIRST element of the MATRIX.

and the DOT-PRODUCT-COLUMN of

the REST of the ROW,

the REST of the MATRIX,

and the COLUMN-INDEX.

Instead of being able to modularly build a solution using the TRANSPOSE and DOT-
PRODUCT functions we already had, the need to avoid using temporary storage
encourages more complex and obscure techniques. This example is an illustration of
a general situation where an N-pass procedure will use temporary storage for the
output of intermediate passes. There is a temptation to substitute a one-pass
procedure to avoid using temporary storage, but this procedure has to be more
complicated and specialized, because the code inside the loop must do a little piece
of all of the passes.

Our aim is to make the use of temporary storage more efficient, so that the creation
of temporary objects is not much worse than allocating temporary results on a stack.
If programmers aren't severely penalized in terms of efficiency for choosing cleaner
programming styles, we hope this will encourage programmers to improve their style.

Acknowled ments

We would like to thank David Moon, who is implementing garbage collection for the
Lisp Machine, for discussions concerning the ideas presented here and for finding
bugs in our earler proposals.

Tom Knight a'id Gerry Sussman were among the first to become concerned about
the feasibility of the Baker algorithm because of locality problems and the lengthy
interval between flips. Their concern helped motivate our work. We would like to
thank Richard Stallman for noticing that our scheme for value cells also provides
another solution to the problem of forward pointers, and for suggesting several
plausible alternatives to specific aspects of our proposals.

We would like to thank Hal Abelson, Tom Knight, Jack Holloway, Kenneth Kahn,

Real Time GC For Temporary Storage 12. Cheaper short term memory may Improve programmlng style

April 26. 1940 at 2:35 Page 21 Hey Llebwmnan'd Carl N ' 11

L Peter Deutsch, Jonl White, Alan Bawden, Henry Baker, Danny Hill*i William
Kornfeld, and Marc LeBrun for their helpful comments on this paper.

Appendix 1. The Baker real time garbage collection alizorithm

We present a summary of Henry Baker's original algorithm.

The CREATE operation creates objects, like Lisp's CONS. ACCESS retrieves a component
of an object, like Lisp's CAR and CDP. 40DIFY performs assignments to components of
objects, like Lisp!s RPLACA and RPLACD.

The address space is divided into two semispaces, fromspace and tospace. Object
creation happens in tospace, and the semispaces are exchanged in a flip when tospace
fills.

Define CREATE an object, given an INITIAL-CONTENTS:
If there's no more room in the CREATION area of TOSPACE.

do a FLIP, exchanging FROMSPACE and TOSPACE.
Call the SCAVENGER to perform a bit of the work to reclaim memory.
Fill the memory for the object with its INITIAL-CONTENTS.
Advance the pointer to the end of the CREATION area past the new object.
Return the pointer to the new object.

Define ACCESS the contents of an OBJECT:

If it's in TOSPACE, just return it.
If it's in FROMSPACE,

Check to see if the OBJECT contains a FORWARDING-ADDRESS.
If so, change the OBJECT's contents to where the FORWARDING-ADDRESS points,

and return the object in TOSPACE.

If it's in FROMSPACE and there's no FORWARDING-ADDRESS,
EVACUATE it from FRONSPACE to TOSPACE.
Update the contents of OBJECT to point to the new object in TOSPACE,
and return the new object in TOSPACE.

When an object in fromspace is accessed, it is EVACUATEd, moving it to tospace. A
FORWARDING-ADDRESS is left behind so references to it will still work.

Real Time OC For Temporary Storage Appendix 1. The Baker real time garbage collection algorithm

April 26, 1980 at 2:35 Page 22 Hervy Lieberman and Carl Hewit

Define EVACUATE an OBJECT:

If the OBJECT is in FROMSPACE,

Copy the object into the EVACUATION area of TOSPACE, creating a NEW-OBJECT.

Leave a FORWARDING-ADDRESS in the old cell to the NEW-OBJECT.

The SCAVENGER makes sure all objects in tospace also have their contents in tospace.
There's a variable SCAVENGER-SLICE which controls how much work in reclaiming
storage is performed every time an object is created. There's a pointer SCAVENGE-
HERE which points to the next object to be scavenged.

Define the SCAVENGER:

Repeat the following until either

No more UNSCAVENGED objects remain in the EVACUATION area of TOSPACE,

or the loop has been repeated SCAVENGER-SLICE times:

SCAVENGE the object at the location SCAVENGE-HERE by

EVACUATING its contents, moving it from FRONSPACE to TOSPACE.

Advance the SCAVENGE-HERE pointer.

Appendix 2. Our real time garbage collector

Creation and access are similar to Baker's, except that instead of fromspace and
tospace, memory is allocated in regions, creation regions to create objects, evacuation
regions to move objects from older to newer regions. Instead of Baker's flips,
regions are condemned, which begins moving the accessible objects out of the region,
scavenging to remove pointers to it, so that the memory for the region can be
recycled.

Define CREATE an object, given an INITIAL-CONTENTS:

If INITIAL-CONTENTS is OBSOLETE [its region was CONDEMNED],

EVACUATE the INITIAL-CONTENTS.

If there's no more room in the current CREATION region,

Make a new CREATION region from which to create objects,

Inheriting GENERATION and VERSION numbers from the previous one.

Call RECYCLE to incrementally perform some of the work to reclaim memory.

If the POPULATION of the current generation is high enough,

Start a new GENERATION jy

Incrementing the CURRENT-GENERATION-NUMBER.

Fill the memory for the object with its INITIAL-CONTENTS.

Advance the CREATE-OBJECTS-FROM-HERE pointer past the new object.

Return the pointer to the new object.

Real Time GC For Temporary Storage Appenix 2. Our real time gpbage collector

" I " " -- - 1 - -- mll i~l I

April 28. 1980 at 2:36 Page 23 Henry Lieberman and Cad Hewitt

Define RECYCLE:
[The process of recycling memory is interleaved with creation of objects.]
Look for a region which is scheduled to be CONDEMNED.
A region is CONDEMNED when it is considered likely to contain garbage:
Young regions are CONDEMNED frequently, older ones more seldom.

SCAVENGE for all pointers into the CONDEMNED region.
RECYCLE the memory for the CONDEMNED region
when the scavenger has removed all pointers to it.

Define CONDEMN a REGION:
Mark the REGION as being CONDEMNED.
Allocate a new EVACUATION-REGION whose
GENERATION number is taken from the CONDEMNED region, and
whose VERSION number is one higher than the CONDEMNED region.

Define ACCESS the contents of an OBJECT:
If the object is OBSOLETE [resides in a CONDEMNED region],

Check to see if the OBJECT contains a FORWARDING-ADDRESS.
[which means the OBJECT has already been evacuated.]

If so, change the OBJECT's contents to
where the FORWARDING-ADDRESS points

and return that forwarded object.
If it's OBSOLETE, and there's no FORWARDING-ADDRESS,

EVACUATE it.
Update the contents of OBJECT to point to the EVACUATED object,
and return that new object.

If the object is not OBSOLETE, just return it.

Define EVACUATE an OLD-OBJECT:
Copy the object to an EVACUATION region

of the same GENERATION as the region containing the OLD-OBJECT
and whose VERSION number is one higher.
Creating a NEW-OBJECT.
Leave a FORWARDING-ADDRESS in the old cell to the NEW-OBJECT.
And return the NEW-OBJECT.

The scavenger removes pointers to obsolete objects by evacuating such objects. As
soon as the scavenger is finished removing all such pointers, the memory for the
region can be reclaimed.

Real Time OC For Temporary Storage Appendix 2. Our real time gi~ge collector

Aprl 26, 1980 at 2:35 Page 24 Henry Lieberman and Cad Hewitt

Define SCAVENGE for pointers to a CONDEMNED-REGION:
Repeat the following for each region
in the GENERATION of the CONDEMNED-REGION,
the immediately previous GENERATION,
and all more recent GENERATIONS up to the current GENERATION:

For each OBJECT in each REGION:
SCAVENGE the OBJECT,
looking for pointers to CONDEMNED-REGION.

Define SCAVENGE an OBJECT, which may point to a CONDEMNED-REGION:
Check to see if the contents of the OBJECT points to the CONDEMNED-REGION.
If it does, EVACUATE the contents of the OBJECT
and modify the contents of the OBJECT to point to the evacuated object.

Define the procedure to MODIFY an OBJECT to have a NEW-CONTENTS:
If the NEW-CONTENTS is OBSOLETE, EVACUATE it.
Is the GENERATION of the NEW-CONTENTS

younger than the GENERATION of the OBJECT?

If it is, bring the OBJECT into NEW-CONTENTS's GENERATION, by
EVACUATING the OBJECT to the next generation, then the next,
until the GENERATION of NEW-CONTENTS is reached.
This creates a chain of forwarding pointers between the generations.

Store the NEW-CONTENTS in the memory location of the OBJECT.

Appendix 3. Lisp code for the matrix multiplication example

First, the solution which transposes the right matrix.

(DEFUN DOT-PRODUCT (LEFT-VECTOR RIGHT-VECTOR)
(COND ((OR (NULL LEFT-VECTOR) (NULL RIGHT-VECTOR)) 8.)

((+ (* (CAR LEFT-VECTOR) (CAR RIGHT-VECTOR))

(DOT-PRODUCT (CDR LEFT-VECTOR) (CDR RIGHT-VECTOR))))))

(DEFUN TRANSPOSE (MATRIX)

(COND ((NULL (CAR MATRIX)) NIL)
((CONS (MAPCAR 'CAR MATRIX) (TRANSPOSE (MAPCAR 'CDR MATRIX))))))

Real Time GC For Temporary Storage Appendix 3. Lisp code for the matrix multiplication example

April 26, 1980 at 2:36 Pap 26 Hemy Llebermn and Carl Hewitt

(DEFUN MATRIX-MULTIPLY (LEFT-MATRIX RIGHT-MATRIX)
(LET ((COLUMNS (TRANSPOSE RIGHT-MATRIX)))

(MAPCAR '(LAMBDA (ROW)

(MAPCAR '(LAMBDA (COLUMN)

(DOT-PRODUCT ROW COLUMN))
COLUMNS))

LEFT-MATRIX)))

The solution which avoids transposing the matrix replaces MATRIX-MULTIPLY-WITHOUT-
TRANSPOSING for MATRIX-MULTIPLY and DOT-PRODUCT-COLUMN for DOT-PRODUCD

(DEFUN MATRIX-MULTIPLY-WITHOUT-TRANSPOSING (LEFT-MATRIX RIGHT-MATRIX)
(MAPCAR
'(LAMBDA (ROW)

(LET ((COLUMN-INDEX 8.))

(MAPCAR
'(LAMBDA (COLUMN)

(PROGI (DOT-PRODUCT-COLUMN ROW

RIGHT-MATRIX

COLUMN- INDEX)
(SETQ COLUMN-INDEX (COLUMN-INDEX 1.))))

(CAR RIGHT-MATRIX))))

LEFT-MATRIX))

(DEFUN DOT-PRODUCT-COLUMN (ROW MATRIX COLUM1N-INDEX)
(COND ((NULL ROW) 8.)

((+ (3 (CAR ROW)

(NTH COLUMN-INDEX (CAR MATRIX)))

(DOT-PRODUCT-COLUMN (CDR ROW)
(CDR MATRIX)
COLUMN-INDEX)))))

Real Tim GC For Temporary Storage Ap edx 3. LIsp code for go matrix multlpllcatlon example

April 26. 1980 at 2:35 Page 26 Hey Liebnmian and Carl Hewitt

Bibliography

[1] Henry Baker, List Processing in Real Time on a Serial Computer,
Communications of the ACM

[2] Henry Baker, Actor Systems for Real Time Computation. MIT Lab for Computer
Science report TR-197

[3] Henry Lieberman, A Preview of Act I in "Society Models of Intelligence", Luc
Steels, ed., forthcoming 1980

[4] Carl Hewitt, Viewing Control Structures as Patterns of Passing Messages,
Artificial Intelligence,

[5] Dan Ingalls, The Small Talk 76 Programming System: Design and Implementation
Fifth ACM Conference on Principles of Programming Languages, 1978

[6] Edsger Dijkstra, Leslie Lamport, et al, On The Fly Garbage Collection: An
Exercise in Co-operation, Communications of the ACM, November 1978
[7] Jonl White, Memory Management in a Gigantic Lisp Environment, or GC

Considered Harmful,

[8] David Moon, MacLisp Reference Manual, MIT Lab for Computer Science report

[9] Daniel Weinreb, David Moon, Lisp Machine Manual, MIT Artificial Intelligence
Lab report, 1978

[10] MIT Lisp Machine Group, Lisp Machine Progress Report MIT Artificial
Intelligence Lab memo

[11] L Peter Deutsch, Daniel Bobrow, An Efficient, Incremental. Automatic Garbage
Collector Communications of the ACM, Sept 1976

(12] Alan Snyder, An Object-Oriented Machine Architecture. MIT LCS PhD thesis

[13] Jon Allen, Anatomy of Lisp, McGraw Hill 1979

[14] Peter Bishop, Garbage Collection in a Very Large Address Space, MIT Lab for
Computer Science report TR-178

Real Time GC For Temporary Storage Bibliography

April 26, 1980 at 235 P&g. 27 Hewry Lll.emnm and Cad Hewitt

[15] Joel Moses, The Function of Function in Lisp,

Reol Time GC For Temperry Storage Bibiography

